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Bending elasticity and bending fluctuations of lipid bilayer containing an additive

Isak Bivas* and Philippe Me´léard
UMR-CNRS 6052, E´cole Nationale Supe´rieure de Chimie de Rennes, 35700 Rennes, France

~Received 3 May 2002; revised manuscript received 28 October 2002; published 28 January 2003!

The static and dynamic behavior of a bilayer containing an additive is examined theoretically. We have
proved that the amplitudes of the thermal shape fluctuations of a quasi spherical lipid vesicle depend on the
value of the bending elasticity of the vesicle’s membrane at free exchange of molecules between its constituent
monolayers. The dependence is calculated of this bending elasticity as a function of the concentration of the
additive in the low concentration domain. In the same domain, the autocorrelation function of each vesicle
fluctuation mode is found to be dependent on the two-dimensional diffusion coefficient of the bilayer additive.
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I. INTRODUCTION

Biomembranes belong to the main building blocks of l
ing matter. Their mechanical properties, and especially t
bending elasticity, determine some of their basic functio
cellular interactions, cell fusion, adhesion, etc. However, d
to the complicated structure of the biomembranes, their
vestigation is usually performed by using simplified mod
like lipid bilayers. A preponderant method applied for t
determination of the bilayer bending elasticity is the analy
of the relevant thermal bending fluctuations. Thus, a the
of the mechanical properties of pure lipid bilayer and of t
thermal shape fluctuations of giant lipid vesicle with a me
brane of this kind was developed@1–6# ~for a recent review
see@7#!. It is our aim in what follows, to present a furthe
generalization of some of the above theoretical results for
case of a bilayer containing an additive. More specifica
what we are here interested in is a particular case of a m
of real biomembranes, comprising different lipids and p
teins.

A lipid vesicle is considered with bilayer in a monopha
state. It contains 2N lipid molecules and 2M molecules of an
additive,Nout andMout of them being in its outer monolaye
andNin and Min in its inner monolayer. Let us consider a
additive molecule, which is in contact with the molecules
the two monolayers, e.g., the case of transversal prote
What we can do in this case is to assign a direction to eac
the additive molecules. If it is directed ‘‘up’’~‘‘down’’ ! it
will be taken as a part of the outer~inner! monolayer.Mout,
Nout, Min, andNin are assumed to be time independent nu
bers.

Let St f be the area of the bilayer in its flat tension fr
state withM molecules of the additive andN lipid molecules
in each of its monolayers. LetC be the molar concentratio
of the additive in the bilayer,C5M /(M1N). The moduli
ks(C) and k̄c(C) are the stretching and the saddle sp
bending elasticity, defined as in the case of a pure lipid
layer @1#. Following Helfrich @1#, a membrane built up o
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two chemical species is characterized by two bending e
ticities: kc

f r(C) when there is a free exchange of the mo
ecules of the lipid and of the additive between the two mo
layers comprising the bilayer, andkc

bl(C) when this
exchange is not permitted.

First, the concentration of the additive in the bilayer
assumed to be not fluctuating~fluctuations in the monolayer
are allowed!. In the last section, it is demonstrated that th
restriction is not essential.

When the vesicle thermal fluctuations are treated,
membrane is considered as a closed surfaceS(t), defined at
a time t in the laboratory frame of referenceXYZ, whose
centerO is appropriately placed inside the vesicle. Let (u,w)
be the polar angles of a direction, piercing the membran
the momentt in a point with radius vectorR(u,w,t). Fol-
lowing the approach described in detail elsewhere@2,3,6,8#,
uR(u,w,t)u5R(u,w,t) is presented as follows:

R~u,w,t !5R0@11u~u,w,t !#, ~1!

whereR0 is the radius of a sphere of volumeV ~not fluctu-
ating!, equal to that of the vesicle.

The function u(u,w,t) can be decomposed in a seri
with respect to the spherical harmonicsYi

j (u,w):

u~u,w,t !5(
i 50

i max

(
j 52 i

i

ui
j~ t !Yi

j~u,w!. ~2!

A cutoff i max;R0 /l is introduced in the summation, wher
l is some typical intermolecular distance.

II. FORM FLUCTUATIONS OF A VESICLE WITH A LIPID
MEMBRANE CONTAINING AN ADDITIVE

The fluctuating membrane is presented by its neutral s
faceS(t) @9#. The surfaceS(t) is completely determined by
the ensemble of amplitudesui

j (t) @see Eq.~1!#. A patch of the
membrane, containing a sufficiently high number of lipid a
additive molecules, is considered having area in its flat t
sion free stateDSt f , and principal curvaturesc1 andc2. The
membrane, presented by its neutral surface, is said to
tension free when its tension is equal to zero@9,10#. Let
DMout andDNout be the numbers of additive and lipid mo
ecules in the outer monolayer of this part of the membra

n
4,
©2003 The American Physical Society01-1
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DMin andDNin are the corresponding numbers in the inn
monolayer. The number densitiesDm0 and Dn0 are then
defined as

Dm05
DMout2DMin

DSt f
, Dn05

DNout2DNin

DSt f
.

Generalizing the flip-flop coefficient for a pure lipid b
layer ~introduced by Helfrich@1#!, in our case the flip-flop
coefficientsjm(C) andjn(C) are defined for each of the tw
constituents of the membrane. Now, at free flip-flop for bo
constituents, the quantitiesDm0 and Dn0 can be expresse
by the curvatures and the relevant flip-flop coefficients in
following way:

Dm05jm~C!~c11c2!, Dn05jn~C!~c11c2!.

Further on, the approach developed initially for the d
scription of one-component bilayer@6# is generalized. Only
symmetric membranes are considered. The two-compo
membrane is symmetric, if its flat tension free state w
equal number of molecules of both kinds in the two mon
layers is the state with minimum elastic energy. At free fl
flop for the two constituents, the bending elasticity of t
membrane is that at free flip-flopkc

f r . For a tension free
membrane the bending energy densitygc

f r(c1 ,c2 ,C) is in
this case

gc
f r~c1 ,c2 ,C!5 1

2 kc
f r~C!~c11c2!21 k̄c~C!c1c2 . ~3!

As in the case of a pure lipid bilayer, the saddle splay be
ing elasticity k̄c(C) does not depend on the exchange
molecules between the monolayers@11# and does not influ-
ence the fluctuations@3#. At fixed curvaturesc1 and c2 the
bending energy at free flip-flop is the minimal one. T
bending energy density at arbitraryDm0 and Dn0 close to
the minimum is presented in quadratic approximation w
respect to Dm0 and Dn0 using the moduli Fmm(C),
Fmn(C), andFnn(C),

gc~c1 ,c2 ,C,Dm0 ,Dn0!

5gc
f r~c1 ,c2 ,C!1 1

2 Fmm~C!@Dm02jm~C!~c11c2!#2

1Fmn~C!@Dm02jm~C!~c11c2!#@Dn02jn~C!

3~c11c2!#1 1
2 Fnn~C!@Dn02jn~C!~c11c2!#2.

~4!

For convenience, the explicit dependence of the mod
and of the flip-flop coefficients on the concentrationC will
be omitted till the end of this Section.

When Dm050 and Dn050, then the relevant bendin
elasticity is equal to that at blocked flip-flopkc

bl ,

gc~c1 ,c2 ,C,0,0!5 1
2 kc

bl~c11c2!21 k̄c c1c2 . ~5!

From Eqs.~3!, ~4!, and~5! the relation betweenkc
bl andkc

f r is
obtained
01290
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kc
bl5kc

f r1Fmm~jm!212Fmnjnjn1Fnn~jn!2. ~6!

When the excessesMout2Min and Nout2Nin are uni-
formly distributed, the spontaneous curvaturec0

0 of the mem-
brane is

c0
05

1

kc
bl H Fmm

Mout2Min

St f
jm1FmnFMout2Min

St f
jn

1
Nout2Nin

St f
jmG1Fnn

Nout2Nin

St f
jnJ . ~7!

Let s0 be the mean area per molecule in a pure lipid tens
free bilayer. The mean square amplitudes^@ui

j (t)#2&, 2< i
,A@(R0)2C/s0# @^A(t)& denoting the time average of an
time dependent functionA(t)], calculated on the basis of th
energy in Eq.~4! are

^@ui
j~ t !#2&5

kT

kc
f r

1

~ i 21!~ i 12!

3
1

i ~ i 11!1
s~R0!2

kc
f r

22
kc

bl

kc
f r

c0
0R012

kc
bl2kc

f r

kc
f r

,

~8!

wheres is the tension of the membrane,k is the Boltzmann
constant, andT is the absolute temperature.

Considering the vesicle membrane as a liquid shell w
only one bending elasticitykc , Milner and Safran@3# estab-
lished the well known relation betweenkc and the mean
square amplitudes of the vesicle fluctuation modes. The c
parison of their result with Eq.~8! shows thatkc

f r plays the
role of kc in their model. The mean square amplitud
^@ui

j (t)#2&, i>2, can be measured experimentally@8#. The
bending elasticity, deduced from the analysis of these am
tudes, is numerically equal tokc

f r . This result is a generali-
zation of the similar one, obtained earlier for a pure lip
bilayer @5,6,12,13#.

III. BENDING ELASTICITY OF A LIPID BILAYER
CONTAINING AN ADDITIVE AT LOW CONCENTRATION

Let us consider a flat tension free state of the descri
above bilayer with concentrationC!1. The energy density
from Eq. ~4! becomes

gc~0,0,C,Dm0 ,Dn0!5@ 1
2 Fmm~C!~Dm0!2

1Fmm~C!Dm0Dn0

1 1
2 Fnn~C!~Dn0!2#. ~9!

Let Dn(Dm0) be a function with the property that th
energy densitygc(0,0,C,Dm0 ,Dn0) attains its minimum
1-2
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with respect toDn0, at fixedDm0, whenDn05Dn(Dm0).
For low enoughDm0 their relationship can be written in th
following form:

Dn~Dm0!52 $@snm~C!/s0# Dm0% . ~10!

snm(C) is of the order of the area occupied by one molec
of the additive, and depends on its geometry and its posit
ing in the bilayer;s0 is defined in the preceding section.

Let now Dm050. If Dn0Þ0, the energy density
gc(0,0,C,0,Dn0) is proportional to (Dn0)2. Let ks

Dn(C) have
the property

gc~0,0,C,0,Dn0!5 1
8 ks

Dn~C!~s0!2~Dn0!2. ~11!

For a pure lipid bilayer, whose stretching elasticity is a s
of the stretching elasticities of its two monolayers,ks

Dn(0)
5ks , whereks is the stretching elasticity of the lipid bilaye

If the bilayer has fixedDm0 andDn0, its minimal elastic
energy state will not be the flat one. Letc̃(C,Dm0 ,Dn0) be
the curvature of the cylindrically curved state of such a
layer with the minimal bending energy. This quantity is
linear function ofDm0 and Dn0. Let c0

m(C) and c0
n(C) be

the corresponding proportionality coefficients

c̃~C,Dm0 ,Dn0!5c0
m~C!Dm01c0

n~C!Dn0 . ~12!

c0
m andc0

n depend on the shape of the molecules compris
the bilayer.

Using the above quantities, the following dependence
kc

f r on C was calculated (C!1)

kc
f r~C!5kc

f r~0!~11nC!2DkcS c0
m~0!

c0
n~0!

2
snm~0!

s0
D 2

3@kss0/~2kT!# C1O~C2!, ~13!

whereDkc5kc
bl(0)2kc

f r(0) andn is a dimensionless quan
tity of order of 1. Definingkc

aux(C) as

kc
aux~C!5kc

bl~C!2
4@kc

bl~C!#2@c0
n~C!#2

ks
Dn~C!~s0!2

, ~14!

and using the relationkc
aux(0)5kc

f r(0), n was deduced to be

n5
1

kc
aux~0!

]@kc
aux~C!#

]C
U

C50

. ~15!

To obtain these results, a flat membrane with fixedMout

and Min and vanishing concentration of the additive~i.e.,
with very high number of lipid molecules!, in equilibrium
with a pure lipid bilayer, was considered. The additive w
condensed up to concentrationC and the energy of this pro
cess was calculated using the fact that at low concentrat
the molecules of the additives form a two-dimensional g
in the lipid matrix.

In the general case, the expression (c0
m/c0

n2snm/s0)2

is nonzero and of the order of 1. Taking the valuess0
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;61.4 Å2 @14# and ks'200 mN/m @15#, measured for
stearoyl-oleoyl-phosphatidylcholine~SOPC! bilayer, the ra-
tio kss0/2kT'15 is estimated. Another plausible estimatio
is Dkc;kc

f r;kc
bl . As can be seen from Eq.~13!, the normal-

ized derivative@]kc
f r(C)/]C#/kc

f r is expected to have high
negative values for most of the additives. This prediction
in excellent agreement with the experimental data of Ha¨ckl
et al. @16#. Two particular exceptions have to be noted. T
first one is trivial, namely, when the additive is very simil
to the lipid. Thenc0

m5c0
n , snm5s0 , n50, and the bending

elasticity does not depend on the concentration of the a
tive. The second one is the case whenc0

m50 andsnm50.
This case corresponds to symmetric molecules, symm
cally inserted in the bilayer~their plane or center of symme
try coincides with or lies on the dividing surface between t
two monolayers of the bilayer!. In this case, the derivative
(]kc

f r /]C)/kc
f r5n has a modulus of the order of 1.

IV. DYNAMICS OF THE VESICLE SHAPE
FLUCTUATIONS

The theoretical description of the dynamics of a fluctu
ing vesicle was first developed by Schneideret al. @2# and
Milner and Safran@3# under the already mentioned assum
tion that the vesicle membrane is a shell characterized b
single bending moduluskc .

In a previous work@6#, we took into account the inter
monolayer friction on the correlation function̂ui

j (t) ui
j (t

1t)& and obtained the following result for the pure lip
bilayer:

^ui
j~ t ! ui

j~ t1t!&5^@ui
j~ t !#2&@Ai j

vexp~2v i
jt!

1Ai j
Vexp~2V i

jt!#, ~16!

whereV i
j , v i

j , Ai j
v , andAi j

V were expressed by the frictio
coefficient between the monolayers, the flip-flop coefficie
and the bending elasticities of the pure lipid bilayer. Cons
ering the case of a bilayer containing an additive, we prov
that the generalization of this result is as follows: for
arbitrary concentrationCÞ0 the correlation function
^ui

j (t) ui
j (t1t)& consists of three exponents instead of tw

Let q↑↑ , q↑↓ , qm , andqn be the friction coefficients be
tween the additive and the lipid in the same monolayer,
additive and the lipid of the opposite monolayer, the addit
in the inner and the additive in the outer monolayer, and
lipid in the inner and the lipid in the outer monolayer, r
spectively. In the low concentration limit of the additive, th
friction coefficients depend onC as

q↑↑~C!5q↑↑
(1)C1O~C2!, q↑↓~C!5q↑↓

(1)C1O~C2!,

qm~C!5 1
2 qm

(2)C21O~C3!, qn~C!5qn
(0)1qn

(1)C1O~C2!,

whereq↑↑
(1) , q↑↓

(1) , qm
(2) , qn

(0) , andqn
(1) are constants, charac

terizing the lipid and the additive molecules. Taking into a
count that the ratiokT/@s0(q↑↑

(1)1q↑↓
(1))# is equal to the two-

dimensional diffusion coefficient of the additiveD, the
1-3
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following result is obtained for the correlation̂ui
j (t)ui

j (t
1t)& at low concentrationsC:

^ui
j~ t !ui

j~ t1t!&5^@ui
j~ t !#2&H Ai j

v@11O~C!#exp~2v i
jt!

1Ai j
V@11O~C!#exp~2V i

jt!

1Ai j
add~C!expF2D

i ~ i 11!

~R0!2
tG J , ~17!

with

Ai j
add~C!5

~ i 21!~ i 12!

i ~ i 11!1
s~R0!2

kc
f r

22
kc

bl

kc
f r

c0
0R012

Dkc

kc
f r

3
Dkc

kc
f r S c0

m~0!

c0
n~0!

2
snm~0!

s0
D 2

kss0

2kT
C1O~C2!,

~18!

whereAi j
v , Ai j

V , v, andV are those of Eq.~16! for the pure
lipid bilayer. The comparison with Eq.~13! shows that when
(c0

m(0)/c0
n(0)2snm(0)/s0)2>1, Ai j

add(C) can be presented
approximately as

Ai j
add~C!'2

1

kc
f r

]@kc
f r~C!#

]C
U

C50

C. ~19!

These results reveal that the analysis of the thermal sh
fluctuations of a lipid vesicle with bilayer containing an a
ditive, is an appropriate tool for the determination of t
diffusion coefficient of the inclusion in the membrane.

The experimentally measured quantities are^@ui
j (t)#2&

and ^ui
j (t)ui

j (t1t)& @8,17#. The experimental error for the
two quantities are of the same order. For small values oi,
they are;0.1̂ @ui

j (t)#2&. Obviously, the value ofAi j
add(C)

has to be significantly greater than this error. Conseque
the concentrationC must be chosen so thatAi j

add(C), calcu-
lated from the experimental data by means of Eq.~19!, sat-
isfies this condition.
01290
pe
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V. INFLUENCE OF THE CONCENTRATION
FLUCTUATIONS OF THE ADDITIVE IN THE BILAYER

The results presented so far, were obtained under the
sumption, that the concentration of the additive is the sa
all over the membrane. The area of validity of this assum
tion is outlined in this section.

Let C̄ be the mean concentration of the additive in t
membrane and̂ „ui

j@C(u,w,t)#…2& and ^@ui
j (C̄)#2& be the

mean squares of the amplitudeui
j when the fluctuations of

the densityC of the additive in the bilayer are permitted an
forbidden~i.e.,C5C̄ all over the membrane!, respectively. If
the system is not in the vicinity of a critical point, the fo
lowing relationship between these quantities is obtained:

^„ui
j@C~u,w,t !#…2&5^@ui

j~C̄!#2&H 11OFkc
bl~C̄!~R0!2

kTs0
G J .

Taking R0510 mm ~a typical radius value for a gian
vesicle, whose thermal shape fluctuations are studied!, s0

561.4 Å2, and kc
bl;20 kT, it is seen that the correction

due to the fluctuations of the density of the additive are
the order of 1027 and can be neglected.

The density fluctuations of the additive in the bilayer r
sult in one more exponent in the expression for^ui

j (t)ui
j (t

1t)& in Eq. ~17!. Far enough from any critical point, th
corresponding preexponential factor is of the order
@kc

bl/kT#@s0 /(R0)2#^@ui
j (t)#2&'1027^@ui

j (t)#2&. Conse-
quently, this exponent can be neglected too.

On account of these estimations, it follows that the resu
in the present work are valid everywhere in the one-ph
region of the lipid/additive phase diagram except in the
cinity of critical points, if they exist.

VI. CONCLUDING REMARKS

The results of the present work allow better interpretat
of the information deduced from the analysis of the bilay
bending fluctuations. They demonstrate that most additi
decrease the bending elasticity of the bilayer, even at r
tively low concentrations in the membrane. On the basis
our results, a method is proposed for the determination of
diffusion coefficient of an inclusion in the bilayer.
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