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Bending elasticity and bending fluctuations of lipid bilayer containing an additive
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The static and dynamic behavior of a bilayer containing an additive is examined theoretically. We have
proved that the amplitudes of the thermal shape fluctuations of a quasi spherical lipid vesicle depend on the
value of the bending elasticity of the vesicle’s membrane at free exchange of molecules between its constituent
monolayers. The dependence is calculated of this bending elasticity as a function of the concentration of the
additive in the low concentration domain. In the same domain, the autocorrelation function of each vesicle
fluctuation mode is found to be dependent on the two-dimensional diffusion coefficient of the bilayer additive.
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[. INTRODUCTION two chemical species is characterized by two bending elas-
ticities: kf:r(C) when there is a free exchange of the mol-
Biomembranes belong to the main building blocks of liv- ecules of the lipid and of the additive between the two mono-
ing matter. Their mechanical properties, and especially theilayers comprising the hilayer, an&®'(C) when this
bending elasticity, determine some of their basic functionsexchange is not permitted.
cellular interactions, cell fusion, adhesion, etc. However, due First, the concentration of the additive in the bilayer is
to the complicated structure of the biomembranes, their inassumed to be not fluctuatiifjuctuations in the monolayers
vestigation is usually performed by using simplified modelsare allowed. In the last section, it is demonstrated that this
like lipid bilayers. A preponderant method applied for the restriction is not essential.
determination of the bilayer bending elasticity is the analysis When the vesicle thermal fluctuations are treated, the
of the relevant thermal bending fluctuations. Thus, a theoryn€mbrane is considered as a closed surk(¢, defined at
of the mechanical properties of pure lipid bilayer and of the? time t in the laboratory frame of referenceY Z. whose
thermal shape fluctuations of giant lipid vesicle with a mem-CenterO is appropriately placed inside the vesicle. Léi¢)
brane of this kind was developéti—6] (for a recent review be the polar angles of a direction, piercing the membrane at

see[7]). It is our aim in what follows, to present a further the.momentt In a point W't.h rad_|us vegtoR(&,w,t). Fol-
generalization of some of the above theoretical results for th wing the approach (_jescrlbed in detail elseyvr{@,e,ﬁ,ﬂ,
case of a bilayer containing an additive. More specifically, R(6,¢.)|=R(6,¢.t) is presented as follows:
what we are here interested in is a particular case of a model R(6,¢,t)=Ro[1+u(8,¢,1)], (1)
of real biomembranes, comprising different lipids and pro-
teins. whereR, is the radius of a sphere of volumé&(not fluctu-

A lipid vesicle is considered with bilayer in a monophaseating), equal to that of the vesicle.
state. It contains ® lipid molecules and B molecules of an The functionu(6,¢,t) can be decomposed in a series
additive,N°"" andM °"* of them being in its outer monolayer with respect to the spherical harmoni¢ 6, ¢):
andN'™ andM'" in its inner monolayer. Let us consider an '
additive molecule, which is in contact with the molecules of 'max _ _
the two monolayers, e.g., the case of transversal proteins. u(f.e.t)=2 > ul(t)Yl(6,¢). 2

. . . . . . i=0 j=—i

What we can do in this case is to assign a direction to each of
the additive molecules. If it is directed “up{“down”) it A cutoff i ..~ Ro/\ is introduced in the summation, where

will be taken as a part of the outéinnen monolayerM°, . o typical intermolecular distance.
Neut MM andN'™ are assumed to be time independent num-

bers.
Let S be the area of the bilayer in its flat tension free
state withM molecules of the additive ard lipid molecules
in each of its monolayers. L&t be the molar concentration The fluctuating membrane is presented by its neutral sur-
of the additive in the bilayerC=M/(M+N). The moduli  face3(t) [9]. The surface(t) is completely determined by
ks(C) and k,(C) are the stretching and the saddle splaythe ensemble of amplitudes(t) [see Eq(1)]. A patch of the
bending elasticity, defined as in the case of a pure lipid biimembrane, containing a sufficiently high number of lipid and
layer [1]. Following Helfrich [1], a membrane built up of additive molecules, is considered having area in its flat ten-
sion free state\S'f, and principal curvatures; andc,. The
membrane, presented by its neutral surface, is said to be
*Permanent address: Institute of Solid State Physics, Bulgariatension free when its tension is equal to z¢€910]. Let
Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784 M°"t and AN°"" be the numbers of additive and lipid mol-
Bulgaria. Email address: bivas@issp.bas.bg ecules in the outer monolayer of this part of the membrane.

Il. FORM FLUCTUATIONS OF A VESICLE WITH A LIPID
MEMBRANE CONTAINING AN ADDITIVE
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AM™ and AN™ are the corresponding numbers in the inner K'= K"+ @ o €m) 2+ 2@ ménént Prn(€0)2 (6)
monolayer. The number densitiesm, and Any are then
defined as When the excessed®“'—~M™ and N°“'~N™" are uni-
. : formly distributed, the spontaneous curvata§ef the mem-
out__ in out__ in
Am, :u An :u brane is
0 AStf ’ 0 AS’[f '
out__ pgin out__ pgin
Generalizing the flip-flop coefficient for a pure lipid bi- 08:%[ mmu§m+ . ugn
layer (introduced by Helfrich[1]), in our case the flip-flop ke S sif
coefficientsé,,(C) and¢,(C) are defined for each of the two out tin out i
constituents of the membrane. Now, at free flip-flop for both N""—N £ |+ - £ )
constituents, the quantitiesm, and Any can be expressed gif m nmoogtf ni-

by the curvatures and the relevant flip-flop coefficients in the

following way: Let s, be the mean area per molecule in a pure lipid tension

_ _ free bilayer. The mean square amplitudgs!(t)]?), 2<i
AMo=En(C)(C1HCo) ANo=4n(C)(C1FCo). <\[(Ro)?Clso] [(A(t)) denoting the time average of any

Further on, the approach developed initially for the de-time dependent functioA(t)], calculated on the basis of the
scription of one-component bilay¢6] is generalized. Only energy in Eq(4) are
symmetric membranes are considered. The two-component
membrane is symmetric, if its flat tension free state with ) kT 1
equal number of molecules of both kinds in the two mono- ([u}(t)]%)=— i—D(i+2)
layers is the state with minimum elastic energy. At free flip- Ke
flop for the two constituents, the bending elasticity of the

. . . 1
membrane is that at free flip-flok!. For a tension free X . - R
membrane the bending energy densify(c;,c,,C) is in . a(Ro)* ke c —Ke
. i(i+1)+————2—cSRy+2
this case fr KT fr
C (3 C
9¢'(€1,62,C)= 3 k{'(C)(c1 ) > +ke(C)esco. (3 ®)

As in the case of a pure lipid bilayer, the saddle splay bendwhereo is the tension of the membrariejs the Boltzmann

ing elasticity k,(C) does not depend on the exchange ofconstant, and is the absolute temperature. ,
molecules between the monolayéid] and does not influ- Con5|der|ng the ves_lc_le membrane as a liquid shell with
ence the fluctuationg3]. At fixed curvaturesc, andc, the ~ ONly one bending elasticiti., Milner and Safrarj3] estab-
bending energy at free flip-flop is the minimal one. The!iShed the well known relation betweely and the mean
bending energy density at arbitraym, and An, close to square amplitudes of the vesicle fluctuation modes. The com-

. . . fr
the minimum is presented in quadratic approximation withP&rison of their result with Eq(8) shows thak.' plays the

respect toAm, and An, using the moduli®,,(C), role of ke in their model. The mean square amplitudes

®,.(C), and®,(C), ([ul(t)]?), i=2, can be measured experimentdl8]. The
bending elasticity, deduced from the analysis of these ampli-

0c(€1,65,C,Amg,Ang) tudes, is numerically equal ﬂoir. This result is a generali-

. ) X zation of the similar one, obtained earlier for a pure lipid
=0 (€1,€2,C)+ 3 Py C)[AMg— &r(C)(Cr+ ) ] bilayer[5,6,12,13.

TP (C)[AMy—&(C)(cy+C2) J[ANg—€n(C)
Ill. BENDING ELASTICITY OF A LIPID BILAYER
X (C1+Cp) ]+ 3 @ pn(C)[ANg— £4(C)(cr+Cy)]2% CONTAINING AN ADDITIVE AT LOW CONCENTRATION

(4) Let us consider a flat tension free state of the described

) . above bilayer with concentratioB<<1. The energy density
For convenience, the explicit dependence of the modulirom Eq. (4) becomes

and of the flip-flop coefficients on the concentratiGrwill
be omitted till the end of this Section.

_ri 2
When Amy=0 and Any=0, then the relevant bending 9¢(0,0C,Amg, ANg) =3 Pmr C)(AM)

elasticity is equal to that at blocked flip-fldg§', +®, (C)AMeAN,
0¢(€1,¢5,C,0,0)= 3 kP'(cy+¢y)2+ ke CqCs. (5) +35 ®,n(C)(ANg)?]. 9)

From Eqs(3), (4), and(5) the relation betweek?' andk'" is Let An(Amp) be a function with the property that the

obtained energy densityg.(0,0C,Amg,Ang) attains its minimum
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with respect toAn,, at fixedAmo, whenAng=An(Amg).  ~61.4 A2 [14] and ky~200 mN/m [15], measured for
For low enoughAm, their relationship can be written in the stearoyl-oleoyl-phosphatidylcholinSOPQ bilayer, the ra-
following form: tio keSo/2kT~15 is estimated. Another plausible estimation

is Ak.~k!"~k2'. As can be seen from E¢L3), the normal-
ized derivative[ dk!"(C)/aC]/k!" is expected to have high
Snm(C) is of the order of the area occupied by one mo|ecu|é’]egative values for most of the additives. This pred_!ction is
of the additive, and depends on its geometry and its positionn excellent agreement with the experimental data ofktia
ing in the bilayer:s, is defined in the preceding section. et al-[16]. Two particular exceptions have to be noted. The
Let now Amy=0. If Any#0, the energy density first one is trivial, namely, when the additive is very similar

9¢(0,0C,0Any) is proportional to Ang)2. Letk®™(C) have o the lipid. Thencg'=cg, s"™=so, »=0, and the bending

An(Amg)=—{[s"™(C)/sy] Amg}. (10

the property elasticity does not depend on the concentration of the addi-
tive. The second one is the case whgh=0 ands"™=0.
9:.(0,0C,0Ang) = % kﬁ”(C)(sO)z(Ano)z. (11)  This case corresponds to symmetric molecules, symmetri-

cally inserted in the bilaye(their plane or center of symme-
For a pure lipid bilayer, whose stretching elasticity is a sumiry coincides with or lies on the dividing surface between the
of the stretching elasticities of its two monolayekﬁ,”(O) two monolayers of the bilaygrin this case, the derivative
—k,, wherek, is the stretching elasticity of the lipid bilayer. (9k{'/dC)/k{' = has a modulus of the order of 1.

If the bilayer has fixeddmy andAny, its minimal elastic

energy state will not be the flat one. '&tC,Amy,Ang) be IV. DYNAMICS OF THE VESICLE SHAPE
the curvature of the cylindrically curved state of such a bi- FLUCTUATIONS
layer with the minimal bending energy. This quantity is a
linear function ofAm, and An,. Let cg'(C) andcg(C) be
the corresponding proportionality coefficients

The theoretical description of the dynamics of a fluctuat-
ing vesicle was first developed by Schnei@tral. [2] and
Milner and Safrari3] under the already mentioned assump-
T(C,Amy, Ang)=c™(C)Amy+cl(C)AN,. 12 tion that the vesicle membrane is a shell characterized by a

( 0:AM0) =Co (C)AMo + Co(C)ANo (12 single bending moduluk, .

¢ andc? depend on the shape of the molecules comprising " @ Previous work{6], we took into account the inter-
monolayer friction on the correlation functiofu!(t) u!(t

theutgilr?girr.]e above quantities, the following dependence of" 7)) and obtained the following result for the pure lipid
k" on C was calculated¢<1) bilayer:
k{'(C)=k{'(0)(1+»C)— Ak, %(0) —Snm(o)) 2 (o T»:([u{f:)]Z)[Aﬁ?Xp(_ i)
co(0) So +Aexp(—Qln)], (16)
X [ksSol (2kT)] C+0(C?), (13 whereQ], wl, A, andA were expressed by the friction

. . . coefficient between the monolayers, the flip-flop coefficient,
vyhereAkC=kE'(0)—k;r(0) 29de is a dimensionless quan- 5, the bending elasticities of the pure lipid bilayer. Consid-
tity of order of 1. Definingk;™(C) as ering the case of a bilayer containing an additive, we proved
that the generalization of this result is as follows: for an
arbitrary concentrationC+#0 the correlation function
(ul(t) ul(t+ 7)) consists of three exponents instead of two.
Letq,;, d;,, dm, andq, be the friction coefficients be-
and using the reIatioh?“X(O)=kQ(0), v was deduced to be tween the additive and the lipid in the same monolayer, the
additive and the lipid of the opposite monolayer, the additive
1 JkE™C)] in the inner and the additive in the outer monolayer, and the
V=X IC : (15  lipid in the inner and the lipid in the outer monolayer, re-
ke (0) Cc=0 spectively. In the low concentration limit of the additive, the
friction coefficients depend o€ as

4[KE'(C)]12ch(C) ]
kS"(C)(s0)?

k3¥(C)=ko'(C)— : (14

To obtain these results, a flat membrane with fixée"
and M and vanishing concentration of the additities., _ (1) 2 _ 1) 2
with very high number of lipid moleculgsin equilibrium A1 (©)=aiC+O(CT),  a;,(C)=ay C+O(CT),
with a pure lipid bilayer, was considered. The additive was L (2)m2 5 (0) 4 (1) )
condensed up to concentratiGhand the energy of this pro- dm(C)= 2 g;,’C“+0O(C”), dn(C)=qy"+q;’C+0O(C9),
cess was calculated using the fact that at low concentrations
the molecules of the additives form a two-dimensional gasvhereq!?, qf7, ¢, q{”, andq(" are constants, charac-
in the lipid matrix. terizing the lipid and the additive molecules. Taking into ac-
In the general case, the expressiocf/co—s""sp)>  count that the rati&T/[sO(qng)Jr q%ll))] is equal to the two-
is nonzero and of the order of 1. Taking the valugs dimensional diffusion coefficient of the additiv®, the
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following result is obtained for the correlatioful(t)u!(t V. INFLUENCE OF THE CONCENTRATION
+ 7')> at low concentrationg: FLUCTUATIONS OF THE ADDITIVE IN THE BILAYER

The results presented so far, were obtained under the as-
Al[1+0(C)]exp(— w]7) sumption, that the concentration of the additive is the same
all over the membrane. The area of validity of this assump-
tion is outlined in this section.

Let C be the mean concentration of the additive in the

(ul(ul(t+m)=([ul11?

+A{[1+0(C)Jexp — Ql7)

aad i(i+1) membrane and (u/[C(6,¢,1)])% and ([u/(C)]?) be the
+A;j (C)exg —D (Ry)? T, A7) mean squares of the amplitudé when the fluctuations of
0 the densityC of the_additive in the bilayer are permitted and
with forbidden(i.e.,C= C all over the membranerespectively. If
) . the system is not in the vicinity of a critical point, the fol-
AZIC) = (i=1)(i+2) lowing relationship between these quantities is obtained:
ij o 2 bl
o a(Ro) ke o Ak bl = 2
i(i+1)+————2—cyRp+2— . g ke (C)(Rp)
S <(u£[c<a,<p,t>])2>=<[uf<c>]2>[ 140 —qe ||
m 2
Ak [ €o(0)  s"M(0) @C+O(CZ) Taking Ry=10 um (a typical radius value for a giant
kI \ cj(0) So | 2kT ' vesicle, whose thermal shape fluctuations are stidiggl

19 6L4 A2, and k!'~20KkT, it is seen that the corrections
due to the fluctuations of the density of the additive are of

whereA? , Af!, , andQ are those of Eq(16) for the pure ~ the order of 107 and can be neglected.

lipid bilayer. The comparison with E¢13) shows that when ~ The density fluctuations of the additive in the bilayer re-
(c(0)/cD(0)—s"™(0)/s0)2=1, Ai"’}dd(C) can be presented sult in one more exponent in the expression (fof(t)_uf(t
approximately as +7)) in Eq. (17). Far enough from any critical point, the
corresponding preexponential factor is of the order of
y 1 Jk"(C)] [ke'/KTI[so/(Ro)*I([ul(1)]*)~10""([ul()]?). ~ Conse-
AY(C)~ T e C. (190 quently, this exponent can be neglected too.
c C=0 On account of these estimations, it follows that the results

These results reveal that the analysis of the thermal shad@ t_he present vx_/ork are valid everywhere in the qne-pha_se
fluctuations of a lipid vesicle with bilayer containing an ad- region of t_hg I|p|d/_add|t_|ve phasz_a diagram except in the vi-
ditive, is an appropriate tool for the determination of the SNt of critical points, if they exist.
diffusion coefficient of the inclusion in the membrane.

The experimentally measured quantities &fe!(t)]?)

and (ul(t)ul(t+ 7)) [8,17]. The experimental error for the  The results of the present work allow better interpretation
two quantities are of the same order. For small values of of the information deduced from the analysis of the bilayer
they are~0.1([ul(t)]?). Obviously, the value oﬂf’}dd(C) bending fluctuations. They demonstrate that most additives
has to be significantly greater than this error. Consequentlyjecrease the bending elasticity of the bilayer, even at rela-
the concentratiol€ must be chosen so thAﬂ-dd(C), calcu- tively low concentrations in the membrane. On the basis of
lated from the experimental data by means of 8@), sat- our results, a method is proposed for the determination of the

VI. CONCLUDING REMARKS

isfies this condition. diffusion coefficient of an inclusion in the bilayer.
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